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Gel electrophoresis of DN A in moderate fields: The effect of fluctuations
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The reptation model for gel-electrophoresis of DNA in a stationary field is considered. It is
shown that tube-length fluctuations are of primary importance for the macromolecular dynamics in
the region of moderate fields. Coupling between fluctuations and the chain conformation provides
a mechanism of macromolecular orientation. It is predicted that the mobility in the “plateau”
region is linearly (rather than quadratically as in the classical biased reptation theory) proportional
to the electric field. This approach is also applied to the mobility minimum problem and to gel
electrophoresis in tight gels (with pore sizes smaller than the Kuhn segment of DNA). It is shown
that tube-length fluctuations do not suppress the minimum of the mobility. However, they do
shift the minimum to lower molecular weights: the minimum corresponds to M o e~ ! rather than
to M o € 2, as predicted by the classical model, where ¢ < 1 is the reduced field. It is also
predicted that electrophoresis in tight gels is characterized by a number of regimes with different
power dependencies of the mobility on the reduced field. The theoretical results are supported by

FEBRUARY 1995

computer simulation data and experimental evidence.

PACS number(s): 87.10.+e, 83.10.Nn

I. INTRODUCTION

Dynamics of a single long polymer chain in a gel is a
problem of fundamental interest. In particular, it can
serve as a test of general concepts of polymer dynam-
ics, e.g., the reptation model [1,2], which is very likely
to be applicable to the gel case (in contrast to polymer
solution or polymer melt dynamics where the reptation
mechanism is not so apparent [3]). The problem of poly-
mer dynamics in a gel under external (electric) field also
attracts considerable attention mainly in connection with
gel electrophoresis of DNA, a powerful technique for sep-
aration of DNA fragments according to their molecular
weight [4].

Understanding of polymer dynamics under an external
field had been substantially improved several years ago
by application of the reptation concept to the theory of
gel electrophoresis of DNA [5-8]. The so-called biased
reptation model (BRM), which had been developed to
describe the problem, implies that the polymer chain is
constrained by the gel structure to move in a “tube,”
the basic motion being field-driven curvilinear diffusion
along the tube axis (Fig. 1). The model has been def-
initely successful in predicting the general behavior of
DNA mobility as a function of molecular weight [7,8].

The most important directions of recent work in this
area are (1) the inclusion of fluctuations of the drift veloc-
ity and tube-length fluctuations [8-15]; (2) the study of
the effect of inhomogeneity of the media [16-19]; (3) field
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FIG. 1. DNA chain in a large-pore gel: the pore size a > b,
where b is the Kuhn segment of DNA. The macromolecule is
considered as a chain of blobs of size a, each blob being a
nearly Gaussian coil consisting of approximately (a/b)> Kuhn
segments. The gel subchains (schematically shown by crosses)
confine the DNA chain in a tube of diameter ~ a; s is the
coordinate along the tube axis, L is the total tube length, and
h. is the projection of the tube axis onto the field direction.
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inversion and cross-field electrophoresis and related prob-
lems [20-22]; (4) electrophoresis in strong fields, where a
branched rather than a linear tube appears to be relevant
(the branched structure can be considered as a result of
the leakage of chain parts in the shape of “hernias” out
of the original tube) [23-32].

The present paper is aimed at a detailed study of the
effect of tube-length fluctuations only. We are not going
to discuss or review any other effects and just assume
that they are negligible. More specifically, we assume
(i) that the gel is homogeneous on scales of an order or
larger than macromolecular size, (ii) that the (electric)
field acting on polymer links is uniform and stationary,
(iii) that the field is weak enough for the effect of loops
(“hernias”) to be negligible. Yet the polymer chain dy-
namics even under these simplifying assumptions turns
out to be rather complex [33]. We show that the effect of
tube-length fluctuations results not merely in some small
corrections but rather leads to an essential revision of a
number of basic predictions of BRM.

The scope of the paper is the following. The next sec-
tion is devoted to the description of BRM, and the main
results obtained with the model. The approach called
biased reptation with fluctuations (BRF) is outlined in
Sec. III (the arguments are similar to those presented in
Ref. [33]). The main result is that mobility of a long chain
under constant field is linearly proportional to the field
strength, see Eq. (18). The detailed quantitative anal-
ysis of the BRF is presented in Sec. IV; the results are
compared with computer simulations data in Sec. V. The
mobility minimum problem is discussed in Sec. VI. Here,
we show that tube-length fluctuations shift the mobil-
ity minimum to the region of lower molecular weights
[if the reduced field parameter, €, defined by Eq. (3) is
small]. The generalization of the main BRF results for
tight (small porous) gels is considered in Sec. VII. We
find a number of regimes where the mobility of a long
DNA chain is proportional to €, €*4, and €2 where € is

the reduced field.

II. BIASED REPTATION MODEL

Let us consider a polymer chain immersed in a gel,
which is characterized by a single parameter, the average
pore size a. The model assumes that the chain (DNA
fragment) is entangled with the gel, i.e., the chain size,
R is much larger than a; it is also assumed that the Kuhn
segment of DNA, b is smaller than pore size: R > a > b.
Thus, the DNA molecule can be considered as a flexible
chain of blobs of size a, which is constrained to move
in a virtual tube created by the gel environment (see
Fig. 1). The tube length (the primitive path length [2])
is L = Na, where N is the number of blobs per chain
(N > 1). The principle motion of DNA molecule is
now one-dimensional (1D) curvilinear diffusion (Brown-
ian motion) along the tube axis, lateral movements being
forbidden. Complete conformational relaxation implies
that the chain should move along the tube on a distance
of the order of its length; thus the relaxation (disentan-
glement) time is [2,34]

Tais ~ L?/D1p = 1o N?, (1)

where D1p = T/(¢{N) is the curvilinear 1D diffusion con-
stant, ¢ is the effective friction coefficient per blob, and
7o = Ca?/T is the blob time.

An electric field F induces additional directed drift of
the chain provided that it is charged. The curvilinear
drift velocity, vq = § (here, s is a coordinate along the
tube) is [6]

he
NT()’

Vd = €

()

where h, is the projection of the end-to-end vector onto
the field direction (see Fig. 1), € is the reduced field pa-
rameter,

€ =qFEa/T, (3)

and q is the effective charge per blob. Note that ¢ =
E/E** with E** = T/(aq).
Typical disentanglement time due to the drift is

L LN
Td ™ gy ~ haly (4)

Assuming Gaussian statistics, (hy ~ R = N%5%a), we find
that the drift dominates over Brownian diffusion (74 <
Tdis) lf [36]

€>60=N_3/2. (5)

Note that condition (5) is normally fulfilled in practice.
The center of mass velocity is

& = vghy/(Na). (6)

Thus, electrophoretic mobility 4 = (&)/FE, which is of
primarily importance for gel-electrophoresis experiments,
is

_ (vahs) _  (R)
I‘L - NaE - ‘U/O N2a2 y (7)

where po = g/¢{. So the mobility is determined by the
tube conformation. If the field is weak enough, then the
chain statistics is nearly Gaussian [37]: (h2) = Na?/3,
and [6]

u/po = 1/(3N). (8)

However, stronger electric fields would induce some ori-
entation of the leading blob, so that the tube will be
elongated in the field direction (Fig. 2).

Slightly different treatments of the orientation effect
were proposed [7,8] with similar results. The orientation
distribution of the leading blob (see Fig. 2) was assumed
to be governed by Boltzmann factor exp(—ecosf) [7],
where 6 is the angle between the field direction and end-
blob orientation. The mean orientation (the order pa-
rameter) of the end blob, which is then transferred by
the drift to any other blob is

1 = (cos @) = cothe —1/¢, ~ € for e € 1. 9)

Neglecting the Gaussian component of the end-to-end
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FIG. 2. The chain in a strong enough electric field, E, is
elongated along the field direction (z axis); 6 is the angle
between the chain head segment and the field direction. The
orientational order parameter is 7 = (cos ).

vector, we find the mean (absolute) value of the end-
to-end projection,

{|hz]) = Nan ~ Nae for e < 1. (10)
Clearly the effect of orientation is important if |h,| >
R = N%3q, ie., if ¢ > N7%5. Using egs. (7, 10), we
get [7]

Ju e { VT N < N*
K/ ko €2, N >N* e<1

Here, N* ~ ¢ 2 is the crossover chain length. Note that
the crossover field €* ~ N~%% is well inside the region
€ > N—3/2 where the Brownian longitudinal diffusion is
negligible in comparison with the electrophoretic drift.

So the mobility as a function of molecular weight sat-
urates at some field-dependent level, thus, reducing the
resolution of electrophoretic technique in high molecular
weight region. Although this behavior is definitely con-
firmed in experiments, the predicted field dependence of
the mobility (u ~ €?) is in rather poor agreement with ex-
perimental data [7,39]. In the next two sections, another
theory for molecular orientation during electrophoresis
is proposed. It is shown that tube-length fluctuations
significantly enhance the orientation effect of the field
leading to a qualitatively new dynamic behavior. One
of the main results of the theory is the prediction of lin-
ear dependence of saturated mobility vs field (x ~ €),
which is in much better agreement with experiments and
computer simulations (see Sec. V).

One of the important successes of BRM is an explana-
tion of the “band inversion” phenomenon [8-10]. In Sec.
VI, we will show that although the general qualitative
arguments for band inversion (see, e.g., [14]) based on
BRM are correct, the effect of tube-length fluctuations is
also very essential here and leads to a qualitatively differ-
ent description of minimum of the mobility as a function
of molecular weight.

III. THE BRF MODEL

The model of biased reptation with fluctuations
(BRF) [33] takes into account that actual motion of the
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chain is not merely an electrophoretic drift along the
tube axis but rather is a superposition of the drift and
1D Rouse motion. The latter results, in particular, in
fluctuations of the chain density along the tube and in
tube-length fluctuations. The relaxation time of a chain
section consisting of m segments (blobs) is of order

T(m) ~ Tom2.
During this time, the blobs in the section will move (along
the tube) on a distance of order [40]

As(m) ~ am®5.

Thus, the typical displacement of a blob along the tube
during time ¢ (here: we assume that t is shorter than the

Rouse time 7 = 7oN?2 ) is [2]
Asy ~ a(t/To)/2. (12)
The fluctuation, Asy for short enough time intervals
is surely larger than the displacement due to the drift,
Asg ~ vgt . On these short time scales (¢ < t*, where
t* is estimated below) any blob, and, in particular, the
leading-end blob rapidly fluctuates exploring different
tube paths rather than moving with a constant veloc-
ity [Fig. 3(a)]. The typical length of the terminal sec-

(a)

he(M*) Ah,

FIG. 3. (a) Alternative conformations that are being ex-
plored by the terminal section of the chain. The typical length
of the rapidly fluctuating terminal section of the tube, shown
in white, is of order of s* = m*a. The permanent tube part
is shown in black. (b) The head part of the tube, M*, which
moves cooperatively during a time step, At ~ t*. Two dis-
tinct conformations of the terminal m* subchain (shown in
white) correspond to forward (+) and backward (—) steps.
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tion of the tube that can be reentered (and created once
more) with these fluctuations is s* ~ Asf(t*) , where the
crossover time t* can be estimated using the condition

Asg(t*) ~ Asg(t"). (13)

Using Eq. (12), we thus get

4 \ 1/3 4 \1/3
t* ~ ( a 4) , ¥ =m*an~ <—~—a ) . (14)
ToVg ToVd

Now, we come to the central point of the BRF ap-
proach. We state that it is the terminal section of m*
= s*/a blobs rather than single end blob that must be
in a quasiequilibrium with the electric field. Therefore,
the terminal section must be slightly stretched by the
total electric force FF = gEm*, the orientational order
parameter being of order

n = (cos ) ~ FITG ~ m¥e. (15)

The order parameter (15) is much larger (by a factor
of m*) than that predicted by BRM [see (9)] using the
assumption that only the orientation of the end blob is
effectively influenced by the field.

Taking into account that |hy| ~ Nan and using
Egs. (2) and (15), we get m* ~ €7 %% and

n = (cos @) ~ €*5. (16)

Comparing the last result with Eq. (9), we see that tube-
length fluctuations significantly enhance the orientation
order for weak fields (¢ < 1). Equation (16) is valid if
(i) the Gaussian component of the end-to-end vector is
negligible (R = N°%5a <« Nan) and (ii) the time ¢* asso-
ciated with backward movements of the terminal chain
part is much smaller than the Rouse time 75 . Both these
conditions reduce to N > N* with

N* ~ e L (17)

For N S N* both tube-length fluctuations and orienta-
tion effect of the field becomes negligible, the mobility
being determined by the classical relation (8). Thus, us-
ing Egs. (7) and (16) we get

N—1 for N < N*

(18a)
K/ Ho € for r N > N*, e<]1.

(18b)

Note that the mobility of long chain varies linearly with
the field in contrast with the BRM prediction (11); also,
the limiting chain length N* is inverse proportional to e.

The derivation of the main results, Eqgs. (16)—(18), was
based on a “quasiequilibrium” ansatz for chain orienta-
tion. Below, we are going to show that the main results
can be also obtained without this ansatz, using purely
dynamical arguments. Let us concentrate on a 1D mo-
tion of the leading end of the chain (motion along the
primitive path, or the tube) which is described by the
function s(t) = s(0,t). Let us smooth the function over
a time scale At. If At < t* [the time t* is determined by
Eq. (13)] then the motion can be described as a chaotic

sequence of forward (along the tube) and backward move-
ments (steps) which are due to tube-length fluctuations.
On the other hand, for At > t*, nearly all steps must
be directed forward, with positive As. Let us choose
At ~ t*: now the chain end dynamics can be pictured
as a sequence of mainly forward steps, yet with a no-
ticeable fraction (say, 1/3) of backward steps. In other
words, for At ~ t* each forward step of the leading end
is tried a few (say, two) times. Now let us turn off com-
pletely the direct orientation effect of the field, which
was considered by BRM as the main effect [see Eq. (9)].
As we demonstrated above, the direct effect is negligi-
ble in comparison with the fluctuation effect [compare
Egs. (9) and (16)]. Thus, we assume that each forward
step implies a creation of a completely random (Gaus-
sian) part of the tube consisting of m* = s*/a segments
(blobs). The real-space displacement of the end segment,
Az during the step should be of order of Gaussian size
of m* subchain:

Az ~d=a(m*)*°. (19)

Note that Az might be positive or negative with a
priori equal probabilities. For simplicity, let us assume
that Az can take two values,

Az = *d.

Once created, a different part of the tube can be de-
stroyed by a subsequent backward step. An important
point is that the probability of this backward step does
depend on Az. The probability is higher for Az < 0
since the effective electrophoretic force is proportional
to the end-to-end projection, h; [see Eq. (2)] and, thus,
the effective drift velocity (in forward direction) is locally
smaller for the case Az < 0. Thus, the probability p4
that a step with Az > 0 becomes permanent (will not be
destroyed by subsequent backward step) must be a bit
higher than the probability p_ for Az < 0. Obviously
the mean projection of the m* terminate subchain onto
the field direction is of order dAp, where Ap =py —p_:

(Az) ~ d Ap. (20)

The difference Ap = p; —p_ must be of order of differ-
ence of effective curvilinear drift velocities for these two
cases:

A
Ap~ =2, (21)
V4
where
vqg = €ena/To (22)

is given by Eq. (2). Note that here Awvg is the dif-
ference between local curvilinear drift velocities of the
chain end for the cases Az > 0 and Az < 0. On
the time scale of one step, At ~ t* which is assumed
to be much shorter than the Rouse time of the whole
chain, 7R = T9IN?, distant chain parts move virtually
independently, so that more oriented (along the field di-
rection) parts move faster. On the other hand, a chain
part consisting of M blobs should move cooperatively
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if it’s longest relaxation time 7(M) is shorter than At.
Thus, the relevant length of the head part of the chain
which must move cooperatively is given by the condition
7(M) = 1¢M? ~ At, so that the number of blobs in the
part is

M* ~ (t*/70)°. (23)

Therefore, Avg should be proportional to the difference
between the end-to-end projections, Ah,, of the head
part of the chain (consisting of M™* blobs) for the cases
of positive and negative “orientations” of the terminate
m* subchain [see Fig. 3(b)]:

|Ah,| d
Avg ~ el
Y Mrry T My

(24)

where we take into account that |Ah,| ~ d. Now using
Eqgs. (20)—(24), we easily get

d3e
Az) ~ ————
(Ao) ~ (25)
so that the order parameter is
Az en)?/3
n= (Az) (_77)__ (26)

am* n

After simple transformations, we finally obtain
Eq. (16) which implies the final result for mobility,
Eqgs. (18).

Note that more generally, we can take into account
both the fluctuation orientation effect and the direct ori-
entation [Eq. (9)]: 7 ~ €%°+const x ¢; however, for weak
fields, € < 1, the second (direct) term could be neglected.

IV. QUANTITATIVE ANALYSIS OF THE BRF
MODEL

Let us start with the basic equation for the 1D curvi-
linear dynamics of the chain:

¢ 8s(m,t) /8t = k 8%s/0m? + qE v(m,t) + E(m, 1),
(27)

where m is the number of a blob (along the chain),
0 <m < N, s(m,t) is the position of the mth blob along
the tube at the moment ¢, k is the effective longitudi-
nal elastic modulus of the chain in the tube, k ~ T'/a?,
v(m,t) is the £ component (projection onto the field di-
rection) of the unit vector tangential to the tube axis at
the point m, Z(m,t) is the random thermal force acting
on the segment m at the moment ¢t. The random force is
characterized by the correlation function,
(E(m,)E(m/,t")) = 2T¢ §(m —m') §(t — t').

Using reduced variables,

u = s/a, k = ka?/T,

T = t/7o, To =Ca2/T, (28)

we can rewrite Eq. (27) as

Ou(m,T)/01 = KB?u/OMm?® + f(m,T) + &(m,T), (29)
where

fim,7) =€ v(m,T), (30)

(€) =0,
{E(m,T)E(m!, 7)) =2 6(m —m') §(r — 7). (31)

Note that « is of order of unity.

Following [2], we assume that an effective constant
force (of entropic nature) is applied to the chain ends;
the force keeps the chain stretched along the tube. Thus,
the boundary conditions for Eq. (29) are

Ou/Om =0 = Ou/OMm =N = const = 1. (32)

We assume that the reduced field € is small (e «1);
therefore, we expect that n = (v(m,t)) is also small. On
the other hand, the chain is assumed to be long enough
so that it does not retain its Gaussian conformation but
rather is aligned along the field:

(hz) = Nan > N%%a. (32")
Under this condition, Eq. (7) can be rewritten as
w/ o =n°. (33)

Thus, in order to get the mobility, we have to analyze
the dependence of the order parameter, n on e.

The 3D dynamics of the polymer chain is completely
defined by (i) 1D curvilinear reptation governed by
Egs. (29)—(32) and (ii) orientational properties of the
(end) parts of the tube created by reptation. In the ab-
sence of the field, the end segments are oriented at ran-
dom; the field induces some a priori orientation of these
segments. We are going to show, however, that this di-
rect effect of the field is negligible in comparison with a
posterior: orientational order resulting from the coupling
with 1D curvilinear motion. So, in the following consid-
eration, we will completely neglect the direct effect of the
field on the end parts of the chain.

From the consideration of Sec. III, one can gather that
the fluctuation orientation effect is due to the coupling
between chain orientation and the effective electric force
which is locally proportional to the projection of a chain
segment onto the field direction, v = cos 8. It is fluctua-
tions of v that are responsible for the orientation effect.
We will show that these fluctuations can be considered
as small perturbations.

The driving force for electrophoretic drift, f can be
represented as a sum of two terms:
f(mvT) =f0+fl(m7‘r)7 (34)
where
ha
fo = (fm,m)) = ellhel) _ o (35)
is the average force and f; = f — fo. Thus, we rep-

resent the external force as a sum of an unknown con-
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stant and some perturbation which depends on the seg-
ment position m, time 7 and on the chain conformation
I': fi = fi(m,7|T"). Note that for the stationary elec-
tric field considered below f; does not directly depend
on time 7, however, the force is still time dependent via
time dependence of the chain conformation I'.

At the present stage, we do not assume anything about
the chain conformation. Thus, Eq. (34) can be considered
as the definition of f; . Note also that no orientational
order is induced without the perturbation (random con-
tribution f;) since the averaged force fo induces curvi-
linear drift with constant velocity vo = fo, but does not
imply any preferred direction. Therefore, if the random
contribution were absent (fi; = 0), the chain would retain
its equilibrium Gaussian statistics.

Now let us consider f; as a small perturbation (for a
given averaged force, fo) and analyze the first order of the
corresponding perturbation scheme. In other words, let
us consider a linear response of the chain conformation
to the force f; (in Appendix A we show that the second-
order and higher-order effects are negligible). Any quan-
tity (in particular, the orientational order parameter, 7)
could be considered as a functional of f;(m,7|T') . For
f1 = 0 the order parameter is zero. Therefore, it is nat-
ural to expect that in the main approximation (for small
f1), the order parameter should be linear in f;.

Using Egs. (30) and (34), we write

fi(m,7|T) = € v(m,T) — fo. (36)

The last equation can be formally represented as

fi(m,7|I)

N oo
- / dmI/ dr’ T(m’,T’) Fy (m,’r;m/,’rllr), (37)
0 —oo

where
Fy(m,m;m/,7'|T) = [ev(m/,7') — fo] §(m — m') §(7 — ')

(38)

and the function r(m/,7') = 1. Equation (37) suggests a
generalization of the problem for an arbitrary modulation
function r(m, ), which is assumed to be a priori known.
The local order parameter,

ﬂ(mﬂ') = <V(m7 T)) ’

(here () denote ensemble averaging) can be formally con-
sidered as a functional of the modulation “law,” r(m, 7).
In the main (linear) approximation, the relationship can
be generally represented as

n(m,7) = /dm/ dr' K(m,m;m/,7") r(m/,7").  (39)

The kernel K (---) represents a linear response for the
segment m at the moment 7, to the local (random) force
acted on the segment m' at 7/. Obviously, the function

1525
K depends only on the difference 7 — 7'.
Let us define the function,
1 [N
H(m/,7) = —/ dm K(m,T;m’,0), (40)
N Jo

which gives the averaged along the chain order parameter
at 7 induced by the “§” force,

Fi(m,7;m/,0|T") = [ev' — fo] 6(m — m') §(7) (41)

which was applied to the m' segment at v = 0 [here,
v' = v(m’/,0)]. Using Eq. (39) with 7(m,7) = 1, we thus
get the total averaged order parameter:

oo N
17=/ dT/ dm’' H(m', ).
) )

Thus, in order to get the order parameter, we should
consider the effect of a small instantaneous perturbation,
Eq. (41).

While considering the function H(m/',7), we should
take into account that the perturbation F;, Eq. (41),
is zero for 7 < 0. Therefore, the chain conformation
is Gaussian for negative 7, so that H(m',7) = 0 for
T < 0. Also, the orientation of the m’ segment at 7 =0
should be quite random (isotropically distributed), im-
plying uniform distribution density P for the z projec-
tion, v/ = v(m/,0), of the unit vector tangential to the
chain at the point m’ at 7/ = 0:

PW')=05 for —1<v <1

(42)

(43)

Let H(m/,7|v') be the subaveraged orientation order pa-
rameter induced by the force F; , Eq. (41), with a given

initial “orientation” of the m’' segment, v’ = v(m/,0).
Obviously,

H(m',7) = /du’P(v’)H(m',ﬂu’). (44)
Note that at the moment 7 = —0 all segments (apart

from the segment number m’ which we will call the “ori-
ented segment”) must be randomly oriented. There-
fore, the initial averaged along the chain order parameter
is [41]

H(m',0|) =v'/N. (45)

The parts of the tube that are being created at the head

of the chain or parts that are being lost at the tail are also

oriented at random. Therefore, the mean order parame-

ter can change only if the initially “oriented segment” is

renewed [Fig. 4(a)] or removed at the tail [Fig. 4(b)].
Therefore,

’ / VI
H(m', i) = % |

N-m )
xofr— (22",
(- (%)
where W (m', 7 |v) is the probability that initially ori-

ented m’ segment has been renewed during the time 7;
©() is the Heaviside function, and (N — m’')/fo is the

1—-W(m, V)]

(46)
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FIG. 4. Two possibilities to renew the head segment: (a)
by backward motion on m > m' steps along the tube; (b) by
creeping along the tube on the distance As > (N — m/)a.

mean time needed for the tail to drift up to “initially ori-
ented” segment of the tube (here, we enumerate segments
from the head, m = 0 to the tail, m = N).

In order to renew the oriented m’ segment the chain
end should move in a backward direction (along the tube)
on the distance m’ (see Fig. 4). This is almost impossible
if m’ is large enough. Using simple arguments of Sec. III
[see derivation of Eq. (14)], we find that the backward
motion is possible if

m Sm* = f TS, r St = £ (47)
Note that Eq. (47) is in agreement with (14), and m* =
s*/a, T* = t* /70.

Thus, the function & W(m/,7|v) is not negligible
only for m’ < m* . Moreover, this function should tend
to some constant limit for 7 > 7*:

W(m',7|v") = w(m'|v') = W(m/,co|V) for 7 > 7*.
(48)

The function W (m/, 7|v') could be expanded in powers
of the external force, ev’ — fo, which is essentially pro-
portional to e. In the first order, we write

W(m/,7|v') = Wo(m/,7) + [ev — fo] Wi(m/, T)
+0((ev' — fo)?), (49)

where Wo(m',7) is the probability of retaining (m’-

segment) for reptation with constant drift velocity fo.

Taking into account that m’ S m* < N and t(m') >
7*, these conditions are ensured by Egs. (5) and (32)]
we get [see Egs. (46) and (48)]

/ooo dr H(m',r|') ~ ;—; [ — w(m’)]. (50)

Using Eqs. (42)-(50), we get the general expression for
the order parameter:

7= _% /ON dm’/dV'P(V') ()% wi (m')
- Y s () do, (51)

where wy(m’) = Wy(m’,00) . Note that the upper limit
of the last integral in the right hand side of Eq. (51) can
be taken as infinity since wy(m’) — 0 for m' > m*.

Let us consider the 1D curvilinear motion of the lead-
ing chain end starting at arbitrary moment denoted as
7 = 0. On the time scale of order 7* the end moves back
and forth, thus creating and renewing the end parts of
the tube. Obviously the maximum backward displace-
ment of the end (for 0 < 7 < o0) must be achieved
at some finite 7. Let D(u,7)dr be the probability that
the maximum backward displacement along the tube ex-
ceeds u and is achieved in the infinitesimal time interval
(7,7 + d7). Obviously,

w(u|p) = W(u,0V') = /0°° D(u,1)dr. (52)

Let ug(m, 7) be a realization of the unperturbed pro-
cess with constant drift velocity, i.e., a solution of
Eq. (29) with f(m,7) = fo. The effect of the pertur-
bative force F;, Eq. (41), should result in additional
displacement, Au(m,7) of the chain segments. Solving
Egs. (29) and (32) with f = fo + Fi, where F} is given
by Eq. (41), we get

u(m, ) = ug(m, ) — Au(m, 1),

Au(m,T) = v —fo {exp [7_ (m = m’) ]

ATKT

+ exp [:_(ln+—m')2:| } (53)

kT

Thus, in the first approximation, the end position is
u(0,7) = uo(0,7) — Au(0,7),
so that
w(ult) = /0°° Do[u + Au(0,7),7] d7 + O [(eu' - fo)z] ,
(54)
where Dg(---) corresponds to the unperturbed process

Uug.
Substituting Eq. (53) into Eq. (54), we get
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w(m'|v') = wo(m') + [ev — fo] wi(m)

+0 [(e' - fo)*] (55)
where
wo(m') = /Ooo Do(m’, ) dr
and
wim) = [ T OBOUTLT) ()0 exp [-%} ar.

(56)

Taking into account that in Eq. (53) typical m' ~ m* ~
fo—l/3 and 7 ~ T* ~ f0_4/3 so that m'2 /7 ~ f02/3 < 1, we

simplify Eq. (56) as (see Appendix A for more details)

"N o *° 8D0(m’,7') —0.5
wy(m') ~ /0 o (mKT) dr. (57)

Using Eq. (51), we get, finally,

n= ﬁl Do(0,7) (n7) %% dr. (58)

The integral in the right hand side of Eq. (58) is a func-
tion of only two parameters, fo and k:

/0°° Dy(0,7) (7r'r)_0'5 dr = I(fo, k). (59)

Note that Dg(0,7) is essentially independent of NV since
the typical displacement, m*, is much smaller than N.
Using scaling (self-similar) properties of Eq. (29), we get
the following scaling relation:

I(fo, k) = £2/3 k19 1(1,1). (60)

Here, I(1,1) is a numerical constant.
Using Egs. (35), (58)—(60), we get

3/4
n~ [—————I(lg’ 1)} k14 el/2, (61)

Equation (61) is the main result of this section. Using
this equation and Egs. (8) and (33), we find the following
mobility behavior:

o = 1/(3N) for N <« N* (62a)
HIBO =1 Cc k0% for N> N* e< 1, (62b)
where
1
I 63
N 3CkKk0-5¢ (63)
and
3/2
C= [I_(li;_l)} : (64)

Note that Eq. (62) is in apparent agreement with
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Eq. (18). Note also that an increase of the reduced longi-
tudinal elastic modulus, &, should suppress tube-length
fluctuations and, thus, result in a decrease of the order
parameter and the mobility.

Now, we have to evaluate the only unknown quan-
tity I(1,1). It hardly could be calculated analytically.
However, this universal constant could be easily obtained
from computer simulations corresponding to the follow-
ing system of equations [compare with Egs. (29)—(32)]:

Ou/8t = 8*u/Om® + 1+ £(m,t), 0 <m < oo, (65)
3u/3m|m:0 = 0,
(€) =05 (&(m,t)&(m/,t)) = 28(m —m') §(t —¢').

One can easily see that according to the definition,
Eq. (59),

I(1,1) = =% (1799, (66)

where t is the time corresponding to the absolute min-
imum of u(0,t) during semi-infinite period 0 < t < oo,
with ¢ = 0 being an arbitrary moment. Here () means
ensemble-averaged value with “equilibrium” initial con-
ditions. The numerical result is I(1,1) = 1.9 £+ 0.1, so
that

C ~ 0.50. (67)

In order to confirm the validity of the whole perturba-
tion scheme, we need to estimate higher-order (second-
order) corrections in random part of the driving force, f1,
and compare them to the first-order result, Eq. (61). The
corresponding analysis is performed in the Appendix A.

V. COMPARISON WITH EXPERIMENTS
AND COMPUTER SIMULATIONS

The relationship of the BRF predictions and exper-
imental data for double stranded DNA in agarose gels
has been already discussed in Ref. [39]. Here we review
the discussion, trying to be as quantitative as possible.

Two regimes of reptation implied by Eq. (62) can be
observed if e = E/E** <« 1 and N ~ 1/¢ , i.e., for long
enough DNA in weak enough fields. Thus low-field data
of Heller et al. [43] and Slater et al. [42] are suitable for
the comparison.

First, we should map the theoretical quantities IV, e,
etc., to the experimental parameters — the Kuhn seg-
ment of DNA, b; the total contour length of the DNA
fragment, Lo; the charge per Kuhn segment, go; and the
field E. To do this, we use Eq. (3) and the following
simple relations for the mean end-to-end distance,

(R?) = Na® = Lob, (68)
and the total charge,

Q =qoLo/b= Ng.
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Taking into account that e = E/E** with E** = T /(aq),
we thus get

Tb?

goa3 '

N = Lob/az; q= qoaz/bz; E* =

Using the experimental values for DNA in 1% agarose
gel,

b ~ 100 nm; a ~ 300 nm; gq¢ ~ 30e, (69)

we get
~ 900 nm _ 3000bp ’
where bp means “base point.”
The last theoretical parameter, the reduced longitu-
dinal elastic modulus of the chain of blobs k = ka?/T,
is not directly measurable. In order to calculate x we

note that the mean-square deviation of the primitive path
length is [44]

E*™ ~10V/cm,

((6N)?) = Ta’N/k = %

On the other hand, the model of independent slack or
taut segments [see below, Eq. (71)] assumes that

f 1 Nf

2\ _ —
((BN)*) = Na 1+f 14+f 1+f

Therefore,

K= l—j_f-,—f— (70)

Let us consider two sets of experimental observations
of Heller et al. for 1% agarose gel: (1) for the weakest
field, E = 0.13V/cm and (2) for the longest DNA with
Lo ~ 50kbp. For the first case, the mobility was observed
to be inversely proportional to the molecular weight in
the range Lo = 5-20kbp, in agreement with Eq. (62a)
[this equation can be applied since Lo < L ~ 200 kbp,
the numerical value of L§ being estimated using Eqgs. (63)
and (70)]. For the second case, the mobility varies lin-
early with the field in the range £ = 0.2-1.0 V/cm, in
agreement with Eq. (62b) (note that Ly ~ 50kbp corre-
sponds to €* ~ 0.02 and E* ~ 0.5V /cm).

In order to test the BRF predictions more quantita-
tively, we have to turn to computer simulations results
where the reduced modulus k can be calculated precisely.
Let us reconsider the results of careful numerical studies,
reported in Refs. [29,35,39]. The model, that was de-
scribed in detail in Ref. [35] represents a DNA molecule
in a gel as a sequence of N, segments of contour length
a; each segment might be in two states: either slack
or taut (coiled or extended). Only taut segments con-
tribute to the tube (primitive path) length. If f is the
ratio of the statistical weights of coiled and extended seg-
ments, then the number of primitive path segments is
N = N, /(1+ f). Taking into account that the total con-
tour length is Ly = N,a, and using Eqgs. (68) and (69),
we get
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Na
1+ f

The natural reduced field parameter used in computer
simulations is defined as

f=a/b—1~2; N= ~ Ngo/3. (71)

€a = ana/T7

where g, = Q/N,. Using Egs. (71), we get the following
mapping between reduced fields used in the BRF theory
and in computer simulations:

e=(1+f) €. (72)

Using Egs. (71) and (70) we rewrite the BRF predic-
tion for the reduced mobility, Eq. (62b), as

p/po = Clf(1+f)]" ea > 126, (73)

(for N > N™).

The field dependencies of the reduced mobility ob-
tained in computer simulations [39] for different chain
lengths are shown in Fig. 5.

The BRF theoretical predictions, Eq. (73), are also
shown in Fig. 5 by solid line. Note that for small €,
Eq. (73) is in a good agreement with computer simulation
data (for eN > 1). However, for larger ¢, this equation
somewhat overestimates the mobility. This difference can
be explained as follows: for larger ¢, higher-order correc-
tions to the main linear dependence of the mobility vs the
field should become noticeable. As is shown in Appendix
A [see Eq. (A13)] the first correction is expected to be
negative. Taking this into account, we write instead of
Eq. (73)

1/po ~ 050 k%% [1 — Be®%] ~ 1.2 ¢, [1 — V38 52-5] )

(74)

l_lllll 1 L I””l T 1T T
05| / -
o -
z
-
. &
0.2 <] -
3/ po 0.1 —
0.05 |- -
N =10 o -
20 ®
50 0 N
100 »
0.02 200 o0
i
0.0 -t gl 1 | T 1 L1
0.005 0.0t 0.02 0.05 0.1 0.2 0.5

€a

FIG. 5. The dependence of the reduced mobility, 3x/po,
on the reduced field, €,: ©; e; O; o(filled); o — computer
simulations data [39] for N, = 10, 20, 50, 100, 200; solid
line — theoretical prediction, Eq. (73); dashed line — the
theory with correction, Eq. (74).
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The dependence (74) with 8 ~ 0.7 (this value is the
best fit) is also plotted in Fig. 5 (dashed line); obvi-
ously the agreement between simulations and the theory,
Eq. (74), is now good in the whole region. Note that the
correction [second term in square brackets of Eq. (74)]
leads to an effective decrease of the log-log incline, g 11: E‘: :
it is now slightly smaller than 1 (tending to 1 in the limit
€ — 0), in agreement with computer simulations and in
a marked disagreement with the previous (BRM) predic-

tion (gll:l':: = 2).

VI. MOBILITY MINIMUM PROBLEM

So far we have considered two limits: eN <« 1 and
€N > 1; in the latter regime the mobility nearly does
not depend on molecular weight [see Eq. (62b)]. As was
mentioned in the Introduction, the experimental observa-
tions suggest that the actual dependence of the mobility
p on the molecular weight (or V) is nonmonotonic. In
order to account for this behavior theoretically, we have
to consider the intermediate regime e N ~ 1.

Two main new difficulties arise in the BRF theory in
the region eN ~ 1: (1) the fluctuation induced orien-
tation of DNA chain essentially depends on molecular
weight due to finite length effects, and (2) the drift ve-
locity (which is proportional to fo) is not nearly constant
now; on the contrary, it fluctuates appreciably in parallel
with fluctuations of the end-to-end projection h = h,.
These two new effects are considered below.

A. Fluctuation-induced order parameter for small €

Let us assume that the averaged along the chain driv-
ing force, fo, is known. In the general case, this force
is determined by the end-to-end projection, h, [compare
with Eq. (35) where time averaging was assumed]:

|he|
= —_— . 75
fo=eg (75)
The order parameter near the leading end [47] for a given
fo is defined by Eq. (58) of Sec. IV, which can be rewrit-
ten as

n= W ((x7)70%Y, (76)

where 7, here, is the time corresponding to the maximum
backward displacement of the leading chain-end along
the tube during the period 0 < 7 < oo (the time origin,
7 = 0 being the arbitrary moment) [45]. The typical
value of 7 is [see Eq. (47)]
T~ = f()_4/31€_1/3.

The obtained equations for the order parameter, (76)
and (58) are valid provided that 7 is smaller that the
longest relaxation time, Rouse time of the molecule in
the tube: # < N2. The derivation of Eq. (58) can be
easily generalized for arbitrary 7/N2, the result is
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- €

3fo
where U(7) is the 1D shift of the chain end (along the
tube) induced by the § force applied at 7 = 0 to the end:

@), (77)

n

f(m,7) =48(m) 6(r) — U(r) = u(0,7).

Using Eq. (29) with no random contribution (£ = 0) and
with boundary conditions (32), we get

U(r) = oler/N?), (78)

with

p(z) % i:ij:w exp(—i%/z). (79)

Note that for small « (large V), the N dependence of the
function U(7) is exponentially weak.

The statistics of 7 is also determined by Eq. (29). Self-
similar properties of this equation implies that the distri-
bution density of the reduced quantity, 7 /N? depends
only on a single parameter, k2§, N3/2, Therefore the
averaged value, <<p(n'?/N 2)), also depends only on this

parameter, (p) = ®(k~1/2f,N3/2), so that

€

3foN

n= (k2 foN3/2). (80)

The unknown function ®() cannot be calculated analyt-
ically; however, its asymptotics can be easily obtained
using Egs. (60) and (79):

1 forz k1
&(2) ~ { 1.9 z%/3  for z > 1,

where 1.9 is the value of I(1,1). Note that the condition
z = k" Y2f;N3? > 1 coincides with ¥ < N?/k, and
simultaneously with the condition eN > x~%5. In this
regime, the order parameter predicted by Egs. (80) and
(81) agrees well with the results 58-61 of Sec. IV.

(81a)
(81b)

B. The effect of drift velocity fluctuations

In the region of low electric fields, the DNA molecule
becomes less and less stretched: its conformation tends to
that of a Gaussian chain. Thus noticeable fluctuations of
the end-to-end distance, and, therefore, of the curvilinear
drift velocity should be expected. An analysis of these
fluctuations is a delicate problem since these fluctuations
are superimposed on the tube-length fluctuations and on
the random Brownian motion along the tube. It is good
to start the analysis with a simpler model, assuming that
the tube-length fluctuations are suppressed.

More specifically, let us consider the biased reptation
model (BRM) without random diffusion: the only mech-
anism of the chain motion is a drift of the chain as a
whole along the tube induced by electric field. Let us
also switch off the direct orientation effect. We shall de-
note this simple model [-F — D — O] (i.e., no tube-length
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fluctuations, no random diffusion, no direct orientation).
A dynamic equation for the end-to-end projection h = h,,
for this model can be constructed following Doi et al. [10].
During a short time At, the chain will reptate along the
tube on the distance,

As = vgAt, (82)

where

_clhl

o N'TQ (83)

Vg = ’Ud(h)

is the instantaneous curvilinear drift velocity, see Eq. (2).
The change of the end-to-end projection is

Ah = h(t + At) — h(t) = Ah, — Ah_,

where Ah, is the z projection of the new part of the
tube (created during At), and Ah_ corresponds to the
part that disappeared at the chain tail. Assuming that
As > a, so that the parts can be considered as Gaussian
coils, we write

((AR1)?) = ((AR-)?) = a As/3, (84)

(Ahy) =0; (Ah_) = h%. (85)

Here, h = h(t), and we also assume that the mean end-
to-end projection of a tube segment is h/N. Thus,

<(Ah)2> =2 D* At; (Ah) = v* At, (86)
where
D* = p*(h) = 220, (87)
* * — h
v* =ov*(h) = —mvd(h). (88)

Let p(h,t) be the density distribution function of the
end-to-end projection. Equation (86) implies the fol-
lowing diffusion equation for p(h,t), which can be con-
structed in a standard way:

dp g (0
_— = — —_ D* h - * h . 89
R A A CY EIOT S

The stationary solution of Eq. (89) is

const 3h2
p(h) = T <_W) . (90)

Note that the distribution (90) is in agreement with the
obtained in Ref. [10] if one neglects details concerning
how to remove singularity at A = 0. Moreover, as has
been shown by Viovy [14], the distribution (90) is ex-
act for the case of no random diffusion. The result (90)
can be also easily generalized in order to incorporate the
direct orientation effect of the field, i.e., for the model
[—F — D + O] (see Ref. [10]). One of the important fea-

tures of the distribution (90) is the singularity at h = 0,
which is obviously unphysical. This singularity is not
due to a failure of the solution (the solution is correct),
but rather due to a failure of the model: for small h the
random diffusion cannot be neglected.

Thus, let us turn to a more physical model [ —F + D —
O] taking into account the random curvilinear diffusion.
This model has been solved exactly using the method of
“many-segment” distribution functions in Ref. [46]. In
particular, it was shown that the stationary distribution
function, p(h), is not influenced by the field and remains
Gaussian [48]:

(h) = comst x exp (= 91
p(h) = cons exp | —5nra |- (91)

Let us analyze the applicability of Egs. (82)—(89) to
the model under consideration. For small enough fields,
the random curvilinear diffusion dominates over the elec-
trophoretic drift. As was shown in Sec. II, this is true if
€ < €g = N73/2. Therefore, the result (91) is quite ex-
pectable in this region. However for larger fields, € > ¢,
the drift should dominate over random diffusion [see
Eq. (5)]. Therefore, from the first sight, the above deriva-
tion for the [— — —] model and the final result, Eq. (90),
must be also applicable to the [— + —] model in the re-
gion € > €g. This conclusion is erroneous, however, since
the correct stationary distribution, given by Eq. (91), is
different.

The contradiction that we arrive at is rather subtle. It
can be resolved as follows. We must take into account
that with random curvilinear diffusion, the orientation
of the leading end is not isotropic, but is coupled with
the end-to-end vector, h (remember, however, that in the
model under consideration the direct orientation effect
of the field is switched off). Formally, this can be shown
in the following way. Note that the dynamics with ran-
dom diffusion (but without tube-length fluctuations) can
be considered as a limiting case of more general dynamic
implied by the BRF: we can switch off the tube-length
fluctuations formally by taking longitudinal elastic mod-
ulus k infinitely large, K — co. Substituting Eq. (75) in
Eq. (80), we thus get the order parameter at the leading
end for k — oo,

n=5:90) = 5. (92)
Therefore, instead of (Ahy) = 0 in Eq. (85), we shall
have
a vg(h)
3h
and, thus Eq. (88) should be modified as

<Ah+> =n As = At,

v*(h) = va(h) (3% - th—a) . (93)

The diffusion equation (89) with Eqgs. (87) and (93)
gives the correct Gaussian distribution (91) as a station-
ary solution. Thus, with random curvilinear diffusion the
end-to-end vector distribution must be Gaussian even if
globally the diffusion is negligible [i.e., in the region de-
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fined by in Eq. (5)].

This result relies on the validity of Eq. (92) for the
local order parameter, which implies that the diffusion
locally (but not necessarily globally) dominates over the
electrophoretic drift. The last condition (local dominance
of the diffusion) means that one step along the tube due

to random diffusion occurs faster than that due to the
drift:

a/vq > a®/Dip. (94)

Using Eq. (83), we rewrite this condition as

[« (95)

1
In the opposite regime, € > N 9% the random diffusion
is completely negligible, so that the models [-F + D — O]
and [—F — D — O] becomes indistinguishable, the station-
ary distribution being given by Eq. (90).

Now we are in a position to consider the realistic [+F +
D + O] model which is virtually equivalent to [+F + D —
O). Using Egs. (80), (75) in the general case (of arbitrary
K), we get instead of Eq. (92),

a ehNO-5
n=32 (;—a) : (96)

The above equation for the order parameter at the lead-
ing end implies the following effective velocity:

a

v*(h) = vq(h) {3htI>(ah) - %] , (97)

where @ = eN°5/(a k®®). Using Eq. (89) with
(87), (97), we get the following stationary distribution:

o) = S5t exp (—z + @), (08)

where
U(z) = /‘ZI>(Z)%E (99)

In the region € > €*, the parameter z = ah > 1 is
typically large, so that the second equation (81) is appli-
cable. Using Egs. (98), (99) and (81), we obtain

272 2/3
+2.85 (€ h N) } . (100)
K

The distribution (100) implies the following reduced mo-

bility:
J— N*
2N |’

const 3h2
plh) = = exp [_ZNaz

Ho - N2qg?

o B -ose [1 (101)

where C' ~ 0.50 and N* ~ 1/e are defined by Egs. (64)
and (63). Equation (101) implies that the mobility in-
creases with the chain molecular weight (with V) in the
region of its validity, i.e., for € > €* that is for IV > N*.
In the opposite limit, N <« N*, the mobility is a de-

creasing function of N being inverse proportional to the
molecular weight [see Eq. (62a)]. Thus, for a given field,
€ < 1, the mobility as a function of N should attain
a minimum at N ~ N*. Note that the minimum posi-
tion predicted here with BRF (N ~ 1/¢) differs from the
analogous prediction of the BRM, N ~ 1/¢2 [10,14].
The above consideration suggests that for a given elec-
tric field, €, the reduced mobility defined as p(N)/u(N*)
must be a universal function of N/N*. This universal
dependence cannot be calculated analytically. Numeri-
cal results for this function will be published elsewhere.

VII. ELECTROPHORESIS IN TIGHT GELS

So far, we assumed that the Kuhn segment of DNA, b,
is smaller than the pore size, a. Let us consider the oppo-
site regime of tight gels: a < b. It is convenient to define
the size a as the mean distance between entanglements
along the chain. In the regime a < b, each Kuhn seg-
ment is constrained by a lot of entanglements. Therefore,
the tube that confines the DNA chain must be extremely
thin and long: the tube diameter must be much smaller
than the Kuhn segment, and the tube length, L, must be
nearly equal to the chain contour length: L ~ Ly = Nyb.
In the slip-link version of the tube model [2] entangle-
ments are substituted by small fixed rings enveloping the
chain (Fig. 6), the distance between nearest rings being
a.

FIG. 6. The slip-link model of a persistent macromolecule
in a tight gel. Entanglements are regarded as small rings
through which the chain is freely drawn. The distance be-
tween the rings is a, a < b; A0 is the angle between the neigh-
boring segments; 6 is the angle between the head segment and
the field. The head segment deformed by the electric field, E,
is shown in the inset. The unit vector tangential to the chain
varies from n; at the beginning to n; at the end of the seg-
ment. The bending angle is determined by An = n; — n;.
The displacement of the segment center of mass caused by the
bend is AR = const X a An/2. The corresponding contribu-
tion to the potential energy of the segment in electric field is
AF. = —E - gAR ~ —¢(An); /2, where a numerical constant
is omitted.
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Thus, the chain can be thought of as a sequence of
N = L/a linear (nearly straight) segments (blobs) of
length a. The persistent flexibility mechanism [52] of
the DNA chain implies that the typical angle between
neighboring segments is A8 ~ /a/b, A8 < 1 (see Fig. 6).

The BRF predictions can be readily generalized for the
case of tight gels. The basic concepts are the same as for
large-pore gels. We are going to reveal the scaling behav-
ior of the mobility using order-of-magnitude arguments.

One of the main new features is that the reduced lon-
gitudinal elastic modulus of the chain in the tube is now
large: k> 1. In order to estimate this modulus, we note
that according to its definition the equilibrium mean-
square fluctuation of the tube length is

(6L)? ~ La/x.

The fluctuation L for a short chain with L ~ a can be
readily estimated:

SL ~ L(AB)* ~ a®/b.
Therefore,

K~ L0 (b/a).

L) (102)

For very small electric fields the chain should remain
approximately Gaussian, therefore, its reduced mobility
is [compare with Eq. (8)]

(h2) _ b
(Na)® ~ 3Na’

1o = (103)

A large enough field should induce an extension of the
DNA chain, the mobility in this region being governed by
the induced orientation order parameter, n: u/po = 2.
The order parameter can be predicted using arguments
presented in the second part of Sec. III. We have to
take into account only two differences: (i) the typical
spatial displacement of the chain end during the time 7*
is [compare with Eq. (19)]

Az ~ d = Vabm*,

where the terminal “length” m* is determined in
Eq. (47); (ii) the Rouse time of M section of the chain
is 7(M) ~ M?/k, so that the number of segments in the
part that moves cooperatively during 7* is [compare with

Eq. (23)]

(104)

M* ~ (k7%)°5. (105)

Using Eq. (25) together with Egs. (22), (104), (105), (47),
we get

Ah d? b €%/3
P E RN L)
m m*’UdM* (17]1/3I‘81/3
Here and below, we take a as a unit length and 79 as a
unit time.

After simple transformations, Eq. (106) gives 7 ~
(b/a)'/%€/2, and

b 05
1/ o ~ (—) €. (107)
a

The region of applicability of Eq. (107) is determined
by two conditions: M* < N, and m* > b/a (the last
condition ensures that the terminal section is a Gaussian
coil rather than a straight segment). Thus, Eq. (107) is
applicable in the region

b\ %5 1 ar 3.5
— — <e< (—) .
(a) N b

“Equilibrium” arguments of Sec. III suggest that direct
field contribution to the order parameter dominates if
m* < 1, i.e., if

enk > 1. (108)
A theory of direct orientation of a persistent chain in
tight gels was proposed in Ref. [46]. We remind you,
here, of the relevant points.

Let f(n) be the density distribution function of the
unit vector n tangential to the chain near its leading
end. In order to set up an approximate equation for the
time evolution of the distribution function, we consider
the time interval At corresponding to one step on the
entanglement length, a, along the tube:

At = a/vg = (en)™! (109)
(in dimensionless variables). The change of the end ori-
entation, An, during At is caused by thermal fluctua-
tions and by electric force acting on the head segment:
An = Any + An.. The fluctuation contribution is char-
acterized by the following moments [53,52]:

<(Anf)2> = 4a/b; (Any) = 0.

The field contribution, An. can be obtained by min-
imization of the free energy associated with the head a
segment:

(110)

F(An) = % (An)® — = (An),. (111)

€
2
Here, the first term is the elastic energy due to end-
segment bending, and the second term is the change of
the potential energy of the segment in the electric field
(see Fig. 6). Minimizing Eq. (111) under the obvious
condition n An = 0, we get

aoU
An, = 3o’ (n) = —en, = —ecosb, (112)
where 0 is the angle between n and the field direction (x
axis).
Using Egs. (109)—(112), we get the following dynamic
equation for f(n):
19f _a

== [V f+V(fVU)],

il (113)

where V = V,, is the gradient in the orientation space.
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The stationary solution of Eq. (113) is
f(n) = const x exp (— U(n)),
which implies the order parameter

n = (cos ) ~ e. (114)
Thus, we get the reduced mobility in the region [see
Eq. (108)]1 > e >a/b:
/o = n* ~ €. (115)
In the last € region that we have to consider, (a/b)3° <
€ < a/b, the terminal section is shorter than the Kuhn
segment, but longer than the entanglement length: a <
m*a < b. Here, we also can use the scheme described just
above with the only reservation: now the field-induced
change of the end orientation is dominated by the fluctu-
ation mechanism rather than the direct field effect. The
change An. can be obtained in analogy with (Ah;) con-
sidered in the second part of Sec. III. Let At be the time
corresponding to the displacement on the distance m*
(the terminate length) along the tube:

m*

At ~t* ~ .
€n

(116)

The typical change of orientation An during At is due
to thermal fluctuations:

((An)?) = 4m*a/b, (117)
so that the typical “amplitude” in the = direction is

v N\ 0.5
m*a

)

(An) is [compare with

(An)y ~d =sind ( (118)
The mean value, An., =
Eqgs. (20) and (21)],

(Ang) ~d Ap , Ap ~ 2¥4. (119)
vg

The variation of the local drift velocity is [compare with
Eq. (24)]
Ah,

Avg ~ e——,

- (120)

where Ah, is the variation of the z projection of the
terminate chain section associated with An:

Ahy ~ n*Ang. (121)
Now using Egs. (118)—(121), we get
~ 2 em”*
(Ang) Moy’
a OU
= ~—_—— 122
An, = (An) brken On (122)
Here, we take into account that vq = en and M* =

Kk (m*)>.
Using Eqgs. (116), (117), (122), we get [compare with
Eq. (113)]

m*?_]i_ m*a
ne 8t | b

2 2
V*f + const x bnenv(fVU) , (123)

where const is a numerical constant. The stationary or-
der parameter implied by Eq. (123) is

n = (cos @) ~ (kypm*)~L. (124)

Taking into account that m* ~ (Emc)_l/3 we, thus, ob-

tain the order parameter,

n~e”? (a/b)**, (125)
and the reduced mobility,
/o =n? ~ €>* (a/b)"C, (126)

in the region a/b > € > (a/b)%°.

Equations (103), (107), (115), and (126) determine the
mobility behavior for a small-pore gel. Note that the re-
duced parameters N and € depend not only on the DNA
molecular weight and electric field but also on the char-
acteristic pore size, a. It is good to reformulate these
results using natural variables,

€ = wEb _ (b ’ €
0 — T - a ’
which do not depend on a (here, Lg is the chain contour

length, and go = Qb/ Ly is the charge per Kuhn segment).
Thus, we have for a < b,

Lo = Na, (127)

b .
- if €0 < €§

5}

e e i P
(2)'e if 2 <e< (), (1284)

where
(0" & Lo/b > (8)° (129a)
G~e () (L%)”’ (2)° > Lo/b> (2)° (129b)
(2)° (%)0.5, (£)*> Lo/b>1.  (129¢)

Thus the separation window 0 < ey <€), where the
mobility does depend on the molecular weight, becomes
wider for smaller pore size, a [see Egs. (129)]. Note
that in order to minimize the separation time (which is
roughly inverse proportional to the migration speed) one
should use the largest possible field (within the separa-
tion window): €9 = €j. The migration speed & = puF is
proportional to (u/po)€o; using Eqs. (128a) and (129a),

we get
. B\Y5 / b\ 2
i u/meo~ (7) (£) -

Therefore, we conclude that the minimum separation
time in a tight gel can be attained using the combina-
tion of smaller gel pores and stronger fields.

The last conclusion is not valid for a large-pore gel.

(130)
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For this case, using the following relation between the
natural variables Lg , €9, and N, e:

Na? Eb _ (b\°®
Ly = p 0 0T o = (E) € (131)
we can reformulate the final results for a > b,
Egs. (62), (63), as
a)2 *
/o ~ (3) 31%, €0 < €} (132a)
(%) €o, €5 < €0 < 1, (132b)
where
b b
o~ —— 133
€o (lLO ( )

The optimum migration speed is now proportional to
(1/po)ey ~ (a/b)(b/Lo)2. Thus, the fastest separation
in a gel with large pores (a > b) can be obtained by
using the combination of larger pores and weaker fields.

VIII. DISCUSSION AND CONCLUSIONS

Recent experiments and computer simulations made
clear that the reptation model oversimplifies the dynam-
ics of DNA fragments in gels under strong electric fields
(e > 1) [23,24,51,25,29,30]. Even for the simplest case of
a stationary field, the behavior of DNA during gel elec-
trophoresis is rather complicated, implying a quasiperi-
odic contraction and extension of the macromolecule [25].
These oscillations can be interpreted as huge tube-length
fluctuations enhanced by the field which may actually re-
sult in effective destruction of the tube accompanied by
formation of a more complex (fractal) structure [30].

In the opposite regime of weak fields, € < 1, considered
in the present paper, the tube-length fluctuations are less
pronounced, they are virtually not affected by the field.
Thus, the tube model [2] is really applicable in this re-
gion (for € < 1). However, as a main qualitative result,
we have shown that these tube-length fluctuations are
still very important even for weak fields: they provide
a completely different mechanism of the chain orienta-
tion. In Sec. III, we demonstrated that the field-induced
orientation of DNA chain must be very much enhanced
by the fluctuations: the direct contribution to the orien-
tation order parameter, 7gijrect ~ €, can be neglected in
comparison with the fluctuation part, nguct ~ €°-°.

Note that the direct orientation effect can be switched
off for a polymer chain with uncharged end segments
(end blobs) [54]. The theory of Ref. [54] based on the
BRM would predict a drastic difference between the mo-
bilities of a normal (uniformly charged) chain and of a
fragment with uncharged ends. This result is not sup-
ported by our theory: the BRF predicts quite a small
mobility difference between the cases, of the order of
Ap/p ~ Ndirect/NAuct ~ €°°. Thus, an experimental
study of the effect of the uncharged end parts on the gel
electrophoresis can serve as a sensitive test of the BRF
theory [55].
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A detailed analysis presented in Sec. IV B suggests that
in the long-chain limit (N — o0), the order parameter
and the mobility are regular functions of square root of
reduced field, /e

n=const x e fu(Ve); p/po=C %% fu(Ve),

(134)
where

fu(Ve)=1+pB1 Ve+Bae+--- .

As is shown in the Appendix A, the factor (3; is likely
to be negative. These results are both in qualitative and
in good quantitative agreement with experimental mea-
surements and computer simulations (see Sec. V).

Equation (134), which implies that the mobility nearly
does not depend on the molecular weight, is valid for € >
€* ~ 1/N. For € < €*, the mobility is molecular weight
dependent, y o« 1/N. The crossover field, ¢* ~ 1/N
predicted by BRF is much weaker than that predicted
by biased reptation without fluctuations approach (e* ~
1/v/N). The crossover region € ~ 1/N also corresponds
to the minimum of the mobility as a function of molecular
weight.

We predict that DNA fragments can be separated in a
continuous field electrophoresis in the molecular weight
range,

(135)

b T
where Lg is the macromolecular contour length, go is the
charge per Kuhn segment, b. Thus, the separation range
can be increased by using gels with smaller pore size, a,
or by reducing the field strength (the latter being the
more effective choice). Equation (136) is valid for a > b;
for tight gels (a < b) the separation range is wider:

. (BT

The most effective separation in a tight gel can be ob-
tained by using a combination of smaller pores and
stronger fields.

(137)
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APPENDIX A: SECOND-ORDER
CORRECTIONS IN F;, TO THE MOBILITY

It is natural to expect that nonlinear effect of the elec-
tric field should result not only in a mean orientation of
the chain, but also in some additional correlations be-
tween orientations of the chain segments (blobs). Hence,
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the effective Kuhn segment may change (a — a*). With
this change the basic equation (58) should be modified
in accordance with note [41]. A renormalization of the
constant I(1,1) is thus expected:

*

I(1,1) - I(1,1) % (A1)
Therefore, we can write [see Egs. (58)—(60)]
*
n~ev;1/3 a—, (A2)
a
where vq = fo is the mean curvilinear velocity of the

chain end [here, we use reduced variables introduced in
Eq. (28), and assume that k ~ 1]. Hence, there are two
main points worth checking: (i) the field-induced rigidity
of the tube and (ii) a nonlinear effect of the random part
of the driving force on the dynamics of the chain end.

Let us start with the first point. We define the effective
Kuhn segment as

a*=a ) [(v(m +n)) -], (A3)

under the condition that »(m') = 1. Orientation of the
segment m' is coupled with the orientation of any other
segment only via additional driving force f; ~ € acting on
the m' segment. This force can change the mean velocity,
vq, of the chain end on the characteristic time scale 7* ~
fo%® ~ €2 [see Eq. (47)]. Using Eq. (53) and taking
into account that the force is effective during a period
T ~ 7*, we get the typical contribution to the end velocity
induced by the force

€ 2

v ~ ~ €°.
7-*

Using Eq. (A2), we get the following correction to the
order parameter of the nth segment:

dn=(wim' +n)) —n~mndv/vg~e (A4)

where n # 0. Typical values of n should be of order of

m* ~ fo_l/3 ~ €"1/2 | the typical range of backward dis-
placement of the chain end [see Eq. (47)]. Thus, we can
cut the sum (A3), excluding n with |n| > m*. Substitut-
ing Eq. (A4) into (A3), we obtain

a*=a[1+0("%)]. (A5)
Thus, the relative second-order correction to the order
parameter and to the mean mobility

sn/n ~ Sp/p ~ €° (A6)

is small.

Now, let us consider the second point and estimate the
typical value of random contribution, dv, to the chain-
end velocity due to random component of the driving
force, f1. Note that we are interested in the §v smoothed
over characteristic time scale 7*. Using Eq. (53), we get
the typical contribution to the chain-end displacement,
du1(7), due to the random force acting on one tube seg-

ment that has been created at 7 = 0 (at a later moment
7' this segment should have the coordinate m ~ vg7'):

Suy (1) ~ e[: dr' (1 —7')7%% exp [-vir? /(7 — ")].
(A7)

Note that the term in square brackets in the right hand
side of Eq. (A5) is small since 7 ~ 7/ S 7* and v2 7* ~
€ K 1. Therefore, we can rewrite the last equation as

Suy ~ € 705, (A8)

About n ~ wvgT new tube segments are created dur-
ing some time 7. Forces, fi(m), m = 0,1,...,n, which
act on different segments are almost uncorrelated since
correlations between their orientations are negligible [see

Eq. (A4)]. Therefore, the total du induced by the force
f1 acting on all n segments is
du ~ duy n®® ~ ewdSr.

Thus, the characteristic contribution to the end velocity,
dv ~ du/T ~ v ; §v/vg ~ €/vyS ~ /4. (A9)

So, the relative fluctuation of the end velocity is small.
Obviously, the relative correction to the mobility due to
this fluctuation,

su/i~ ((§v/v)*) ~ .

Thus, we have checked that the second-order correc-
tions to the mobility are always small.

Finally, we are going to describe one more important
source of the next-to-main order correction to the mobil-
ity in the region 1 > € > €*. The basic expression (58)
for the order parameter was derived using Eq. (56), where

the factor exp [— L—"l_’_'ﬁ] was approximated by 1 (here, we

assume that k ~ 1). The relative first-order correction
to this approximation is
(m')?/7 ~ fa/® ~e. (A10)
Here, we take into account that m’ ~ m*, 7 ~ 7* and also
use Egs. (35, 61). Note that the correction is negative.
The correction (A10) corresponds to typical values of
m' and 7. A much larger (and also negative) correction
stems from the region of relatively small m’ and 7 (m' <«
m*, 7 < 7*), where the exponential factor provides an
effective cutoff at (m’)? ~ 7. Note that for a given 7, the
typical value of m' is of order of backward displacement
of the leading end during the period 7, i.e. [see Eq. (12)],

m! (1) ~ 74,

Therefore, the condition (m')? < 7, specifying the region
where the “exp” factor is nearly 1, can be rewritten as
T2 < ie, T2 1.

Thus, the cutoff associated with the “exp” factor can
be accounted for by changing the lower limit of integra-
tion in the right hand side of Eq. (58) from 0 to a value
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of order of 1. This change implies a negative correction
to 1 of order of

An ~ ——D(0,1). (A11)

fo

According to the definition, the quantity Dg(0,1) must
be of order of probability that the maximum backward
displacement of the leading chain end is achieved during
the first time step, i.e., for 7 S 1. In other words, Dy(0, 1)
is roughly the probability that after the first time step
the end will never return to its initial position, its dis-
placement (along the tube) being always positive. This
probability can be estimated as follows.

First, we note that a return to the initial position is
nearly impossible for 7 > 7*, where the electrophoretic
drift (in positive direction) dominates over random diffu-
sion. On the other hand, for 7 < 7* the drift is not impor-
tant and can be neglected. Therefore, Dy(0,1) should be
of the order of the probability that during 7* time-steps
free end of the chain will never return to initial position
along the tube. One-dimensional dynamics of the free

end can be approximated by random walk on random
walk [49]: u(r) = u(&(7)), where u(£) and £(7) are ran-
dom walks. Thus, the probability that during 7 steps
u(7) —u(0) is always positive is p ~ pips, where p; is the
probability that £(7) will never return to £(0), and p; is
the same for u(§). These probabilities are known [50]:

p1~T Y2 py~ fx;slu/cz-

Obviously, &max ~ 71/2; thus,
D(0,1) ~ p(*) ~ (7*)73/*. (A12)
Now using Egs. (A11), (A12) and (47), (61), we get
0.5

An~ —e, An/n~ —e>.

With this correction the reduced mobility in the region
1> € > €* can be written as [compare with Eq. (62b)]:

w/po = n* = Ck%%€ [1 — const x €%°]. (A13)
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